Thursday, June 19, 2008

Top ten new species for 2007

ResearchBlogging.orgIt is astonishing just how many critters are out there who are to date unknown to science. Even well known groups like birds and mammals occasionally have a new species described. But for large groups, like insects, marine invertebrates, or plants, finding new species is much more common, particularly in little studied areas like tropical forests or deep sea marine habitats. The International Institute for Species Exploration at Arizona State University has released it's list of the top ten new species for 2007 (click here for photos of these amazing critters). These include a new species of fruit bat from the Philippines (Esselstyn 2007), a mushroom discovered on the campus of Imperial College in London (Taylor et al. 2007), a bright pink millipede from Thailand (Enghoff et al. 2007) and an electric ray from South Africa whose genus name is reminiscent of a popular brand of vacuum cleaners (Compagno and Heemstra 2007). Discovering new species is just one of the many potential exciting aspects of museum-based zoology!

ESSELSTYN, J.A. (2007). A New species of stripe-faced fruit bat (Chiroptera: Pteropodidae: Styloctenium) from the Philippines. Journal of Mammalogy, 88(4), 951. DOI: 10.1644/06-MAMM-A-294R.1

TAYLOR, A., HILLS, A., SIMONINI, G., MUNOZ, J., EBERHARDT, U. (2007). Xerocomus silwoodensis sp. nov., a new species within the European X. subtomentosus complex. Mycological Research, 111(4), 403-408. DOI: 10.1016/j.mycres.2007.01.014

ENGHOFF, H.,SUTCHARIT, C.,PANHA, S. (2007) The shocking pink dragon millipede, Desmoxytes purpurosea, a colorful new species from Thailand (Diplododa: Polydesmida: Paradoxosomatidae). Zootaxa, 1563, 31-36.

COMPAGNO, L. J. V.,HEEMSTRA, P. C. (2007) Electrolux addisoni, a new genus and species of electric ray from the east coast of South Africa (Rajiformes: Torpedinoidei: Narkidae), with a review or torpedinoid taxonomy. Smithiana Bulletin, 7, 15-49.

-END


Unless the post above is followed by '-END' then CLICK HERE to read more!

Monday, June 09, 2008

Butterflies, nanotech and BugFest 2008

ResearchBlogging.org

This weekend was the Cincinnati Museum Center's annual BugFest. Together with my son Cameron we had a great time showing visitors a sampling of butterflies from the zoology department's entomology collection (see photo left). Public presentations of museum collections should introduce the role of museum collections in scientific research. Museum collections and other collections-based field work can have uses that will come as a surprise to many. Focusing on butterflies Cameron and I chose to present the role collections can play not only in gaining a basic understanding of nature but also their potential role in very practical applications in materials science.

High magnification images of the wing of a Morpho butterfly were fed to an LCD screen and used to show visitors the intricate scales that make up a butterfly wing. The very fine micro-structure of these wing scales is what creates the iridescent blues and greens of butterfly wings. While many colors in nature are due to pigments embedded within biological structures like hair, feathers or scales other colors are purely structural created by the particular scatter of light reflected from a structured compound like keratin in birds' feathers or layers of chitin in insect scales. Many blues and greens in bird feathers and insect scales tend to be determined by structure rather than pigments. The very fine microscopic structure of a blue feather or scale therefore determines the wavelengths of light it reflects and thus it's color.

Believe it or not a knowledge of how nature produces colors is useful in nanotechnology. Nanotechnology deals with the engineering of very tiny machines on the size scale of a cell. Mimicking nature can be very useful in producing components for these tiny nano-devices. Butterfly wing scales are studied by engineers to create nano-parts with very particular optical properties. Jingyun Huang et al. in 2006 in the journal Nano Letters found that the wing scales of the iridescent blue butterfly Morpho peleides could be used as a template for making tiny artifical scales of aluminum oxide. These artificial aluminum oxide butterfly scales had identical reflective properties to their natural counterparts and they could be used in nanotechnology to split beams of light. Radislav Potyrailo et al. in the journal Nature Photonics in 2007 published a paper describing the ability of the wing scales of Morpho sulkowskyi to act as components in tiny optical gas sensors.

Of course museum collections act as accessible storehouses of biological diversity and the holdings in collections, like those at Cincinnati Museum Center, can provide material for numerous applications (many of which would have never been anticipated by the original collectors) in both basic and applied research.

Potyrailo, R.A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J.R., Olson, E. (2007). Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics, 1(2), 123-128. DOI: 10.1038/nphoton.2007.2

Huang, J., Wang, X., Wang, Z. (2006). . Nano Letters, 6(10), 2325-2331. DOI: 10.1021/nl061851t

-END


Unless the post above is followed by '-END' then CLICK HERE to read more!